Solving the Bz problem in heliospheric weather forecasting
HELIO4CAST
HELIO4CAST
A major unsolved problem in space weather involves predicting the solar wind at the Sun-Earth L1 point,
specifically its speed and the north-south (Bz) magnetic field component. Knowledge of the future solar wind time
evolution would allow us to drive any models for magnetospheric processes, such as the aurora, the radiation belts, the
ionosphere or the currents induced in power lines with much higher reliability and forecast lead time than currently possible.
Our modern society increasingly depends on space borne technology and predicting extreme space weather conditions at Earth is therefore of pivotal importance.
HELIO4CAST description at the EU CORDIS portal
Our hypothesis is that we can predict the strongest Bz fields in magnetic flux ropes in solar coronal mass ejection (CMEs) with a novel combination of hyper-fast semi-empirical models in our new HELIO4CAST simulation, capable of running millions of ensemble members within minutes. Due to the coherence of flux ropes, it will be possible to forecast geomagnetic storms with lead times of 12 hours or more.
Additionally, for clarifying unsolved problems on the CME global shape and magnetic structure, a window of opportunity has opened at the start of solar cycle 25 with the successful launches and operations of Solar Orbiter, Parker Solar Probe, and BepiColombo, forming an unprecedented fleet of spacecraft to study CMEs. Groundbreaking numbers of multipoint lineup events, Solar Orbiter imaging for the first time from higher latitudes, and novel in situ data from Parker Solar Probe close to the Sun will lead to new discoveries. These unique observations in the solar wind will also deepen our knowledge of stellar CMEs.
This ERC project provides an unconventional, direct feedback loop between answering open scientific questions and the application of forecasts in real time that will bring decisive progress in making a reliable space weather prediction part of our daily lives.
Team
PI: Christian Möstl
Postdoc: Ute V. Amerstorfer
Postdoc: Emma E. Davies
Postdoc: N.N.
PhD student: Hannah T. Rüdisser
PhD student: Eva Weiler
Duration: 09/2022 – 08/2027
HELIO4CAST description at the EU CORDIS portal
Our hypothesis is that we can predict the strongest Bz fields in magnetic flux ropes in solar coronal mass ejection (CMEs) with a novel combination of hyper-fast semi-empirical models in our new HELIO4CAST simulation, capable of running millions of ensemble members within minutes. Due to the coherence of flux ropes, it will be possible to forecast geomagnetic storms with lead times of 12 hours or more.
Additionally, for clarifying unsolved problems on the CME global shape and magnetic structure, a window of opportunity has opened at the start of solar cycle 25 with the successful launches and operations of Solar Orbiter, Parker Solar Probe, and BepiColombo, forming an unprecedented fleet of spacecraft to study CMEs. Groundbreaking numbers of multipoint lineup events, Solar Orbiter imaging for the first time from higher latitudes, and novel in situ data from Parker Solar Probe close to the Sun will lead to new discoveries. These unique observations in the solar wind will also deepen our knowledge of stellar CMEs.
This ERC project provides an unconventional, direct feedback loop between answering open scientific questions and the application of forecasts in real time that will bring decisive progress in making a reliable space weather prediction part of our daily lives.
Team
PI: Christian Möstl
Postdoc: Ute V. Amerstorfer
Postdoc: Emma E. Davies
Postdoc: N.N.
PhD student: Hannah T. Rüdisser
PhD student: Eva Weiler
Duration: 09/2022 – 08/2027
Acknowledgements: Funded by the European Union (ERC, HELIO4CAST, 101042188). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.
Publications
23. Weiss, A. J., T. Nieves-Chinchilla, C. Möstl, Distorted Magnetic Flux Ropes within Interplanetary Coronal Mass Ejections, ApJ, in press, 2024. [arxiv]
22. Rüdisser, H. T., A. J. Weiss, J. LeLouëdec, U.V. Amerstorfer, C. Möstl, E. E. Davies, H. Lammer, Understanding the effects of spacecraft trajectories through solar coronal mass ejection flux ropes using 3DCOREweb, ApJ, in press, 2024. [arxiv]
21. Lugaz, N., C. O. Lee, N. Al-Haddad, R. J. Lillis, L. K. Jian, D. W. Curtis, A. B. Galvin, P. L. Whittlesey, A. Rahmati, E. Zesta, M. Moldwin, E. J. Summerlin, D. E. Larson, S. Courtade, R. French, R. Hunter, F. Covitti, D. Cosgrove, J. D. Prall, R. C. Allen, B. Zhuang, R. M. Winslow, C. Scolini, B. J. Lynch, R. Filwett, E. Palmerio, C. J. Farrugia, C. W. Smith, C. Möstl, E. Weiler, M. Janvier, F. Regnault, R. Livi and T. Nieves-Chinchilla, The Need for Near-Earth Multi-Spacecraft Heliospheric Measurements and an Explorer Mission to Investigate Interplanetary Structures and Transients in the Near-Earth Heliosphere, Space Science Reviews, in press, 2024.
20. Davies, E. E., H. T. Rüdisser, U. V. Amerstorfer, C. Möstl, M. Bauer, E. Weiler, T. Amerstorfer, S. Majumdar, P. Hess, A. J. Weiss, M. A. Reiss, L. M. Green, D. M. Long, T. Nieves-Chinchilla, D. Trotta, T. S. Horbury, H. O’Brien, E. Fauchon-Jones, J. Morris, C. J. Owen, S. D. Bale, and J. C. Kasper, Flux rope modeling of the 2022 Sep 5 CME observed by Parker Solar Probe and Solar Orbiter from 0.07 to 0.69 au, ApJ, 973, 51, 2024. [publisher] [ADS] [arxiv]
19. Eastwood, J. P., P. Brown, W. Magnes, C. M. Carr, M. Agu, R. Baughen, G. Berghofer, J. Hodgkins, I. Jernej, C. Möstl, T. Oddy, A. Strickland, A. Vitkova, Definition and design of the Vigil magnetometer for operational space weather services from the Sun-Earth L5 point, Space Weather, 22, e2024SW003867, 2024. [publisher]
18. Salman, T. M., T. Nieves-Chinchilla, L. K. Jian, N. Lugaz, F. Carcaboso, E. E. Davies, Y. M. Collado-Vega, A Survey of Coronal Mass Ejections Measured In Situ by Parker Solar Probe During 2018-2022, ApJ, 966, 118, 2024. [publisher] [ADS] [arxiv]
17. Laker, R., T. S. Horbury, H. O’Brien, E. J. Fauchon-Jones, V. Angelini, N. Fargette, T. Amerstorfer, M. Bauer, C. Möstl, E. E. Davies, J. A. Davies, R. A. Harrison, D. Barnes, M. Dumbovic, Using Solar Orbiter as an upstream solar wind monitor for real time space weather predictions, Space Weather, 22, 2, e2023SW003628, 2024. [publisher] [ADS] [arxiv]
16. Regnault, F., N. Al-Haddad, N. Lugaz, C. J. Farrugia, W. Yu, B. Zhuang, E. E. Davies, Discrepancies in the Properties of a Coronal Mass Ejection on Scales of 0.03 AU as Revealed by Simultaneous Measurements at Solar Orbiter and Wind: The 2021 November 3–5 Event, ApJ, 962, 190, 2024. [publisher] [ADS] [arxiv]
15. Trotta, D., A. Larosa, G. Nicolaou, T. S. Horbury, L. Matteini, H. Hietala, X. Blanco-Cano, L. Franci, C. H. K. Chen, L. Zhao, G. P. Zank, C. M. S. Cohen, S. D. Bale, R. Laker, N. Fargette, F. Valentini, Y. Khotyaintsev, R. Kieokaew, N. Raouafi, E. E. Davies, R. Vainio, N. Dresing, E. Kilpua, T. Karlsson, C. J. Owen, R. Wimmer-Schweingruber, Properties of an interplanetary shock observed at 0.07 and 0.7 Astronomical Units by Parker Solar Probe and Solar Orbiter, ApJ, 962, 147, 2024. [publisher] [ADS] [arxiv]
14. Lugaz, N., B. Zhuang, C. Scolini, N. Al-Haddad, C. J. Farrugia, R. M. Winslow, F. Regnault, C. Möstl, E. E. Davies, and A. B. Galvin, The Width of Magnetic Ejecta Measured Near 1 au: Lessons from STEREO-A Measurements in 2021–2022, ApJ, 962, 2, 93, 2024. [publisher] [ADS] [arxiv]
13. Zhuang, B., N. Lugaz, N. Al-Haddad, C. Scolini, C. J. Farrugia, F. Regnault, E. E. Davies, W. Yu, R. M. Winslow, and A. B. Galvin, Combining STEREO/HIs and Solar Orbiter to Investigate the Evolution of the 2022 March 10 CME, Astronomy & Astrophysics, 682, A107, 2024. [publisher] [ADS]
12. Reiss, M. A., K. Muglach, E. Mason, E. E. Davies, S. Chakraborty, V. Delouille, C. Downs,T. G. Garton, J. A. Grajeda, A. Hamada, S. G. Heinemann, S. Hofmeister, E. Illarionov, R. Jarolim, L. Krista, C. Lowder, E. Verwichte, C. N. Arge, L. E. Boucheron, C. Foullon, M. S. Kirk, A. Kosovichev, A. Leisner, C. Möstl, J. Turtle, A. Veronig, A Community Dataset for Comparing Automated Coronal Hole Detection Schemes, ApJS, 271, 6, 2024. [publisher]
11. Davies, E. E., C. Scolini, R. M. Winslow, A. P. Jordan, C. Möstl, The effect of magnetic reconnection on ICME-related GCR modulation, ApJ, 959, 133, 2023. [publisher] [ADS] [arxiv]
10. Good, S.W., O. K. Rantala, A.-S. M. Jylha, C. H. K. Chen, C.Möstl and E. K. J. Kilpua, Turbulence Properties of Interplanetary Coronal Mass Ejections in the Inner Heliosphere: Dependence on Proton beta and Flux Rope Structure, ApJL, 956, L30, 2023. [publisher] [ADS] [arxiv]
9. Long, D., L. Green, F. Pecora, D. H. Brooks, H. Strecker, D. Orozco-Suarez, L. Hayes, E. E. Davies, U. V. Amerstorfer, M. Mierla, D. Lario, D. Berghmans, A. Zhukov, and H. T. Rüdisser, The eruption of a magnetic flux rope observed by Solar Orbiter and Parker Solar Probe, ApJ, 955, 152, 2023. [publisher] [ADS] [arxiv]
8. Regnault, F., N. Al-Haddad, N. Lugaz, C. J. Farrugia, W. Yu, E. E. Davies, A. B. Galvin, and B. Zhuang, Investigating the Magnetic Structure of Interplanetary Coronal Mass Ejections using Simultaneous Multi-Spacecraft In Situ Measurements, ApJ, 957, 49, 2023. [publisher] [ADS] [arxiv]
7. Farrugia, C. J., B. J. Vasquez, N. Lugaz, N. A. Al-Haddad, I. G. Richardson, E. E. Davies, R. M. Winslow, B. Zhuang, C. Scolini, R. B. Torbert, L. B. Wilson III, F. Regnault, A. Rogers, A. B. Galvin, and W. Yu, How magnetic reconnection may affect the coherence of interplanetary CMEs, ApJ, 953, 15, 2023. [publisher] [ADS] 6. Pal, S., L. Balmaceda, A. J. Weiss, T. Nieves-Chinchilla, F. Carcaboso, E. K. J. Kilpua, and C. Möstl, Global insight into a complex structured heliosphere based on the local multi-point analysis, Frontiers in Astronomy and Space Sciences (Space Physics), 10, fspas.2023.1195805, 2023. [publisher]
5. Riley, P., M.A. Reiss, C. Möstl, Which Upstream Explanatory Variables Matter Most in Predicting Bz within Coronal Mass Ejections, Space Weather, 21, 4, e2022SW003327, 2023. [publisher] [ADS] [arxiv]
4. Harrison, R. A., J. A. Davies, D. Barnes, C. Möstl, L1 and off Sun-Earth line visible-light imaging of Earth-directed CMEs: An analysis of anomalous observations, Space Weather, 21, 4, 2023e2022SW003358, 2023. [publisher] [ADS] [arxiv]
3. Mierla, M., H. Cremades, V. Andretta, I. Chifu, A. N. Zhukov, R. Susino, F. Auchere, A. Vourlidas, D.-C. Talpeanu, L. Rodriguez, J. Janssens, B. Nicula, R. A. Cuadrado, D. Berghmans, A. Bemporad, E. D’Huys, L. Dolla, S. Gissot, G. Jerse, E. Kraaikamp, D. M. Long, B. Mampaey, C. Möstl, P. Pagano, S. Parenti, M. J. West, O. Podladchikova, M. Romoli, C. Sasso, K. Stegen, L. Teriaca, W. Thompson, C. Verbeeck, E. E. Davies, Three eruptions observed by remote sensing instruments onboard Solar Orbiter, Solar Physics, 298, 42, 2023. [publisher, open access] [ADS]
2. Rodriguez, L., A. Warmuth, V. Andretta, M. Mierla, A. N. Zhukov, D. Shukhobodskaia, A. Niemela, A. Maharana, M. J. West, E. K. J. Kilpua, C. Möstl, E. D’Huys, A. M. Veronig, F. Auchère, A. F. Battaglia, F. Benvenuto, D. Berghmans, E. C. M. Dickson, M. Dominique, S. Gissot, L. A. Hayes, A. C. Katsiyannis, E. Kraaikamp, F. Landini, J. Magdalenić, G. Mann, P. Massa, B. Nicula, M. Piana, O. Podladchikova, C. Sasso, F. Schuller, K. Stegen, R. Susino, M. Uslenghi & C. Verbeeck, The eruption of 22 April 2021 as observed by Solar Orbiter, STEREO and Earth bound instruments, Solar Physics, 298, 1, 2023. [publisher] [PDF viewer] [ADS]
1. Weiss, A. J., T. Nieves-Chinchilla, C. Möstl, M. A. Reiss, T. Amerstorfer, R. L. Bailey, Writhed Analytical Magnetic Flux Rope Model, Journal of Geophysical Research - Space Physics, 127, e2022JA030898, 2022. [publisher] [ADS] [arxiv]